

Funded Project HOMEROS ENVRI

Harmonising Observations from Multi-hazard Environments in Research for Open Science – ENVRI

Expectations and first examples from the EOSC EU Node services for Researchers

Presenter: Angeliki Adamaki, Lund University, Sweden

Research group: Angelos Zymvragakis and Ioannis Spingos (National and Kapodistrian University of Athens, Greece), Vassilis Anagnostou (Aristotle University of Thessaloniki, Greece)

Geohazard Assessment

- ✓ Focus on high-risk areas in Greece
- ✓ Earthquakes, ground movements, floods, landslides
- ✓ High-quality data gathered by our institutions and Research Infrastructures

Open Science Goals

- ✓ Make research accessible and collaborative
- ✓ Improve the way we conduct research
- ✓ Openly share FAIR project outputs
- ✓ Enable communities to collaborate

Use Case for EOSC EU Node ***OSCARS

What do we need from the EOSC EU Node Services?	A common workspace	Research groups located at different Universities
		Diverse roles in the project, combining scientific background and technical skills
	File management, storage and sharing services	Transfer/harvest/share/store datasets from various data sources
		Open Science practices and FAIR workflows
	Jupyter lab services	Document/Share code in the form of notebooks
		Create a collaborative environment for research and teaching
	Virtual Machines	For ML and data analysis
		For educational purposes

Step 1 - Jupyter Lab

- ✓ Access Interactive Notebooks Service
- ✓ Harvest data from remote database
- ✓ Share results

First Examples Soscars

Step 2 - Jupyter Lab

- ✓ Access Interactive Notebooks Service
- ✓ Harvest data from local database
- ✓ Run and share notebook

Step 3 – File Share and Jupyter Lab

- ✓ File management
- ✓ Access to shared code and files
- ✓ New collaborative research output

Next Steps - Current environment

- Complete the test on Virtual Machines and Container Platform services
- Estimate credit costs for different tasks to decide where and when the EU Node services can be used
- Follow platform updates and utilise upcoming features and functionalities

Future Steps - Expectations

- Collect (technical and other) user requirements (bigger storage, more credits, features and functionalities)
- Investigate interoperation of systems including EOSC, ENVRI-Hub and relevant RIs/Institutions
- Contribute to continuous community-provided feedback on EOSC services usability!

